Kink degeneracy and rogue potential flow for the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation
نویسندگان
چکیده
منابع مشابه
Generalized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely...
متن کاملKadomtsev-Petviashvili equation
Here u = u(x, y, t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and σ2 = ±1. The case σ = 1 is known as the KPII equation, and models, for instance, water waves with small surface tension. The case σ = i is known as the KPI equation, and may be used to model waves in thin films with high surfa...
متن کاملQuantisation of Kadomtsev-petviashvili Equation
A quantisation of the KP equation on a cylinder is proposed that is equivalent to an infinite system of non-relativistic one-dimensional bosons carrying masses m = 1, 2, . . . The Hamiltonian is Galilei-invariant and includes the split Ψ m1 Ψ m2 Ψm1+m2 and merge Ψ m1+m2 Ψm1Ψm2 terms for all combinations of particles with masses m1, m2 and m1 + m2, with a special choice of coupling constants. Th...
متن کاملLie Symmetry and Exact Solution of (2+1)-dimensional Generalized Kadomtsev-petviashvili Equation with Variable Coefficients
The simple direct method is adopted to find Non-Auto-Backlund transformation for variable coefficient non-linear systems. The (2+1)-dimensional generalized Kadomtsev-Petviashvili equation with variable coefficients is used as an example to elucidate the solution procedure, and its symmetry transformation and exact solutions are obtained.
متن کاملLump solutions to the Kadomtsev–Petviashvili equation
Article history: Received 31 March 2015 Received in revised form 18 June 2015 Accepted 30 June 2015 Available online 2 July 2015 Communicated by R. Wu
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2016
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci16s3919c